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Abstract

In this paper laminar forced convective heat transfer problems inside ducts, with axial conduction, subjected to
the three main types of boundary conditions are solved exactly. The general method of solution involves a change
of the dependent variable leading to a square integrable function in the real line. A complete basis for the vector
space of these functions is used to generate an in®nite expansion for the solution. The form of solutions is presented

for the ¯ows inside a circular pipe, the annular space between pipes, and between parallel plates. 7 2000 Elsevier
Science Ltd. All rights reserved.

1. Introduction

Convective heat transfer in pipes of simple cross-sec-

tion has been the subject of a large number of investi-
gations, both of analytical and numerical nature. The
original Graetz problem [1] has been extended to cover

conditions with low Peclet number, cases in which the
axial conduction in the ¯uid cannot be neglected. In a
number of theoretical works [2±13], the ¯ow domain is

set as the positive real axis, and the assumption of uni-
form ¯uid temperature at the inlet �z � 0� is employed.
As has been frequently pointed out, when the axial
conduction is important, the uniform inlet assumption

is invalid and the ¯uid temperature is altered before
the inlet by upstream conduction. Therefore, the
domain must be extended, in the limit, requiring, the

inlet temperature to be speci®ed at ÿ1: The literature

contains a large number of works using this two-region
approach [14±33]. Flows between parallel plates, and
in circular ducts have been thoroughly investigated. In

all these, the real axis is divided into two regions and,
in fact, the problem is treated as two di�erent prob-
lems, with di�erent independent variables and discon-

tinuous boundary conditions with a jump at the origin.
The two solutions for the divided domain are matched
at the origin by the requirement of continuity of tem-
perature and axial heat ¯ux.

A general method of solution of these problems,
yielding a single solution valid for the complete
domain �ÿ1RzR1�, applicable to the three main

types of thermal boundary conditions, to ¯ows
between parallel plates, through circular and annular
pipes is presented. Hydrodynamic boundary conditions

of non-slip at the con®ning walls are used. Addition-
ally, the thermal boundary conditions are allowed to
vary along the axial coordinate in quite a general

fashion. The solution is based on the convenient
Gram±Charlier basis for the Hilbert space of square
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integrable functions of a real variable. The construc-
tion of the solution involves a change in the dependent

variable aiming at its reduction to a square integrable
function. For this new variable, a solution is proposed
as an expansion in a series with respect to the Gram±

Charlier basis. The basis is chosen in view of two im-
portant properties. Firstly, each of the basis function is
orthogonal to all but one of the Hermite polynomials.
Secondly, each vector is generated by the ®rst deriva-

tive of the previous one.

g0 � exp
�
ÿ Z 2

	
; gk�1 � dgk

dz
; �1�

gk � � ÿ 1�kHk�Z�exp
�
ÿ Z 2

	
; �2�

�1
ÿ1

gi�Z�Hj�Z� dZ �
�
0 if i 6�j
hi � � ÿ 1�i ���

p
p

2ii!
�3�

It must be stressed that this function basis starts

with k � 0, as there are no Hermite polynomial of
negative orders. This allows the establishment of an in-

®nite set of ordinary di�erential equations for the coef-
®cients of the solution expansion. Each equation
depends exclusively on the two previous ones, a fact

that allows their solution in sequence, with no recourse
to approximations of any kind.

2. Problem formulation

Consider the fully developed ¯ow of a Newtonian
¯uid in ducts consisting of in®nitely long, either: paral-

lel plates, cylindrical pipe, or the annular region
between cylindrical pipes. Viscous energy dissipation
and other forms of heat generation are neglected. The

general con®guration is presented in Fig. 1. The energy
balance between convection and conduction of heat in
the ¯uid gives:

Nomenclature

Ak, Fk constants in Eqs. (10) and (11)
a constant of integration in asymptotic sol-

ution (Eq. (6))

Bi Biot number �hsr0=k)
b constant of integration in asymptotic sol-

ution (Eq. (6))

fk coe�cient functions of the expansion in
the Gram±Charlier series solution

gi function basis of Gram±Charlier

h convective heat transfer coe�cient for the
¯uid (W/m2 K)

hs convective heat transfer coe�cient for the
surroundings (W/m2 K)

hj weights de®ned by hj �Hj�gj �
Hj Hermite polynomial
Hj operator de®ned by Eq. (9)

k ¯uid thermal conductivity (W/m K)
L Laplacian operator in one dimension
Nu Nusselt number �hr0=k)
Pe Peclet number �r0v�=a)
q heat ¯ux (W/m2)
r, r0, rE radial distance, radius of the pipe, radius

of external pipe (m)
S function de®ned by Eq. (45)
u arbitrary function of the axial coordinate

in Eq. (9)

T temperature (K)
vz�r�, v� ¯uid velocity pro®le, reference ¯uid vel-

ocity (m/s)

v�Z� dimensionless ¯uid velocity pro®le, v �

vz=v
� � v�Z�

y transverse coordinate (m)
z axial coordinate (m)

Z dimensionless axial coordinate Z �
z=�r0Pe�

Greek symbols
a thermal di�usivity (m2/s)
b, b1 asymptotic value of @y=@Z
DT reference temperature di�erence (K)
j dimensionless heat ¯ux q=jq1j
y dimensionless temperature �Tÿ T0�=DT
Z dimensionless transverse coordinate r=r0 or

y=r0
l ratio of outside to inside radii �rE=r0)
O�Z � function of axial coordinate specifying a

boundary condition (Eq. (48))
ok coe�cients for the expansion of O�Z � in

(Eq. (48))

Subscripts
0 inlet conditions, at Z � ÿ1
m average value
w values at wall
L value at lower wall
U value at upper wall

I value at internal wall
E value at external wall
1 asymptotic value as Z41
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Ly� 1

Pe 2
@ 2y
@Z 2

� v�Z� @y
@Z

, �4�

where:

Ly � 1

Z
@

@Z

�
Z
@y
@Z

�
, or Ly � @ 2y

@Z 2
, and Z � r

r0
or

Z � y

r0
; Z � z

r0Pe
; Pe � r0v

�

a
, v�Z� � vz

v�
,

and y � Tÿ T0

DT
:

�5�

In the above equations, T0 is a reference tempera-
ture and DT is reference temperature di�erence. In all

cases it will be assumed that the limit temperature
�limZ4ÿ1T�Z, Z� � T0� exists, and convergence is fast
enough to guarantee the square-integrability. The pro-
posed method can be applied to the three main types

of convective heat transfer problems: (1) prescribed
wall temperatures; (2) prescribed wall heat ¯ux; (3)
prescribed convective heat transfer to the surround-

ings. Furthermore, the speci®ed wall conditions are
allowed to vary with the axial coordinate. The velocity
pro®le is assumed to be a function of the transverse

coordinate only, satisfying the non-slip condition at
the con®ning walls.
The present method of solution depends upon the

determination of an asymptotic solution, valid for
large values of Z. This arises from a simpli®ed form of
the energy balance (4), in which the ®rst derivative of
y with respect to Z is substituted by its asymptotic

constant value, which is assumed to exist, and conse-
quently, the second derivative is set to zero. In this

case, Eq. (4) becomes: Ly1 � b1v�Z�, where b1 �
limZ41@y=@Z: Notice that the right-hand side of this

equation is a function of Z only, and thus it yields a
solution independent of Z. In a procedure analogous
to the ``variation of parameters'', all the parameters of

the solution, constants of integration and b (replacing
b1), are allowed to vary with Z. The existence of the
limit b1 is crucial. For the cases of speci®ed wall tem-

perature and convective boundary conditions this limit
is zero �b1 � 0�: For the case of speci®ed heat ¯ux,
b1 is a known constant, related to the limiting value

of the heat ¯ux. Therefore, the three main kinds of
heat transfer problems can be solved. Some cases of
mixed boundary conditions can also be solved. The
proposed solution is:

y � y1 �
X1
k�0

fk�Z�gk�Z� where

y1 � b�Z�Lÿv�Z� � a�Z�Lÿ�0� � b�Z�:
�6�

In this expression Lÿ is the pseudo-inverse of the
operator, calculated by the expressions:

Lÿv �

8>>><>>>:
�
1

Z

�
Zv�Z� dZ dZ� �

v�Z� dZ dZ
, and Lÿ�0� �

�
ln Z
Z

, �7�

respectively, for cylindrical or Cartesian coordinates.
Let the parameters of the asymptotic solution depend
on Z allows the functions in the asymptotic solution to

be speci®ed, in such a way as to satisfy the inlet tem-
perature: limZ4ÿ1y1�Z,Z� � 0: This requires that

Fig. 1. Geometry and main variables.
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limZ4ÿ1b�Z � � limZ4ÿ1a�Z � � limZ4ÿ1b�Z � � 0:
The corresponding limits for large values of Z must

exist since y1 must reproduce the original asymptotic
solution. Therefore, y and y1 both vanish at the left
limit �Z4 ÿ1�: Since y approaches y1 as Z

increases, so yÿ y1 approaches zero at both ends of
the real line. It is assumed that convergence is fast
enough to render the di�erence yÿ y1 a square integr-

able function. This argument allows its expansion in
terms of the Gram±Charlier series.
Substitution of the proposed solution (Eq. (6)) into

Eq. (4), yields the following intermediate result:

X1
k�0

�
Lfk ÿ vfkÿ1 � 1

Pe 2
fkÿ2

�
gk

� ÿb 0 ÿ b
�
v�

�
b 0vÿ b 00

Pe 2

�
Lÿv

�
�
a 0vÿ a 00

Pe 2

�
Lÿ�0� ÿ b 00

Pe 2
,

�8�

in which the primes denote di�erentiation with respect
to Z.
The left-hand side of this equation approach zero as

Z41, implying the same to be true for the right side.
The ®rst term on the right-hand side contains b, which
in problems of the second kind, is assumed to

approach a limiting value di�erent from zero, requir-
ing, in such cases, that b 0 be set equal to b �b 0 � b�: In
all the other instances, b � 0, and b 0 and all the

remaining derivatives, converge to zero.
The application of the following operators de®ned

for an arbitrary function of u�Z �:

Hj�u� � 1

hj

�1
ÿ1

uHj�Z� dZ, �9�

lead to the following important result:

Lfj � v
ÿ
Aj � fjÿ1

�ÿ Bj � fjÿ2
Pe 2

�
�
Cjvÿ Dj

Pe 2

�
Lÿv�

�
Ejvÿ Fj

Pe 2

�
Lÿ�0�,

fÿ1 � fÿ2 � 0

�10�

where:

Aj �Hj

ÿ
b 0 ÿ b

�
, Cj �Hj

ÿ
b 0
�
, Ej �Hj�a 0 �,

Bj �Hj�b 00 �, Dj �Hj

ÿ
b 00
�
, Fj �Hj�a 00 �: �11�

The boundary conditions determine the parameters
b, a and b as functions of Z, allowing the determi-
nation of the constants A±F, in Eq. (10). Notice that

f0 depends only on A0±F0; f1 depends on A1±F1 and on
f0; and, in general, fj depends on Aj±Fj, and on fjÿ1,
fjÿ2: The in®nite set of ordinary linear di�erential
equations can be sequentially solved, exactly. For the
parabolic velocity pro®les, the solution yields poly-

nomials in Z of increasing degrees. The ¯ow in annular
regions introduces terms containing logarithms in the
solution. At this point, it is added that the method can

be applied to ¯ows of non-Newtonian ¯uids pending
the absence of secondary ¯ows, and the existence of an
analytical expression for the integral Lÿv: Power law

¯uids introduce non-integer exponents. These cases can
be treated equally well, and in fact, more complex
models for non-Newtonian ¯uids can be used, as long
as an analytical expression for the velocity pro®le

exists.
The steps reported below should be followed:

(a) use the boundary conditions to determine the

functions a�Z �, b�Z � and b�Z �,
(b) determine Lÿv by the integration of the velocity
pro®le (required only if b6�0),
(c) determine the constants A±F in Eq. (10), with
the use of Eq. (11),
(d) determine, sequentially, the coe�cient functions

fk.

Some cases will be examined in detail.

3. Speci®ed wall temperature

3.1. Circular pipes

In the simplest case of ¯ows inside circular pipes the

wall temperature is given as a function of the axial
coordinate satisfying, by hypothesis, the two limits
given below

lim
z4ÿ1 Tw�z� � T0, and lim

z4�1 Tw�z� � Tw1 �12�

Let DT � Tw1 ÿ T0, with which the dimensionless
temperatures become:

y�Z, Z� � Tÿ T0

Tw1 ÿ T0
, and yw�Z� � Tw ÿ T0

Tw1 ÿ T0
�13�

The dimensionless wall temperature is assumed to be

a continuous function of Z almost everywhere, ranging
from zero at the left limit, and increases monotonically
to the right limit. Notice that the discontinuous con-

dition, yw � 0 for Z < 0, and yw � 1 for Zr0, satisfy
these assumptions.
The temperature di�erence between the ¯uid and the

wall is small everywhere, jyÿ ywj � 1: In consequence
of this, �yÿ yw� 2 is even more smaller, and approaches
zero for large values of kZk: This di�erence decreases

A. Silva Telles et al. / Int. J. Heat Mass Transfer 44 (2001) 471±483474



with increasing thermal conductivity, and decreasing
¯uid velocity; the smaller is the Peclet number the

smaller will be the square of the temperature di�er-
ence. In fact, the temperature di�erence is small for all
values of the Peclet number, and the solution repro-

duces the results obtained in the limit as Pe41: This
argument justi®es the assumption of square integrabil-
ity; i.e. the di�erence in ¯uid to wall temperature

belongs to the Hilbert space of square integrable func-
tions of a real variable. Notice that in this case b is
zero, and the boundary conditions imply a � 0 and

b � yw: The asymptotic solution is y1 � yw: Thus, the
proposed solution is of the form:

y�Z, Z� � yw�Z� �
X

fk�Z�gk�Z�: �14�

The boundary conditions for y are:

@y
@Z
�Z, 0� � 0+f 0k�0� � 0, and

y�Z, 1� � yw�Z�+fk�1� � 0:

�15�

In view of these results, it is established that only Aj

and Bj di�er from zero, and Eq. (10) reduces to:

Lfj � v
ÿ
Aj � fjÿ1

�ÿ 1

Pe 2
ÿ
Bj � fjÿ2

� �16�

where:

Aj �Hj

ÿ
y 0w
� � 1

hj

��1
ÿ1

y 0w�Z�Hj�Z� dZ, and

Bj �Hj

ÿ
y 00w
� � 1

hj

��1
ÿ1

y 00w�Z�Hj�Z� dZ:

�17�

Furthermore, fÿ1 � fÿ2 � 0: The boundary con-
ditions for these functions arise from Eq. (15). The

numbers Aj and Bj are determined with the knowledge
of the wall temperature. The ®rst coe�cient function f0
depends only on A0 and B0; f1 depends on A1, B1 and
f0; the generic term fj depends on Aj, Bj, fjÿ1, and fjÿ2.
They can be sequentially calculated exactly, no ap-
proximate procedure is required. The solutions of Eq.
(16) are polynomials of degree 4j� 4: A simple Maple

program was established to perform the integrations.
Detailed results are presented in Ref. [34].

3.2. Parallel plates

For the ¯ow between parallel plates separated by a

distance of 2r0, two wall temperature distributions
must be speci®ed. It is assumed that the upper and
lower walls, and the ¯uid, have the same inlet tempera-

ture �limz4ÿ1T�z, y� � limz4ÿ1TU � limz4ÿ1TL �
T0�: Both walls are assumed to have varying tempera-
tures, which attain asymptotic, possibly unequal �TU1,

and TL1� values. The dimensionless temperatures are
de®ned as:

y � Tÿ T0

TL1 ÿ T0
, yL � TL ÿ T0

TL1 ÿ T0
, and

yU � TU ÿ T0

TL1 ÿ T0
:

�18�

The proposed solution is:

y � y1 �
X

fkgk,

y1 � 1

2
�yU ÿ yL �Z� 1

2
�yU � yL �:

�19�

The leading terms grouped as y1 reproduce the tem-
peratures of the two walls �Z � 1, and Z � ÿ1). They
represent the asymptotic solution, for large values of
Z, of the energy equation in the form Ly1 � 0, with
boundary conditions depending on Z. The left limit

for y is zero, and the right limit is the asymptotic sol-
ution. Therefore, yÿ y1 approaches zero on both
sides of the real line. The comparison between Eqs.

(19) and (6) shows that a � 1
2 �yU ÿ yL�, b � 1

2 �yU ÿ yL�
and that b � 0: Eq. (10) becomes:

Lfj � v
ÿ
Aj � fjÿ1

�ÿ Bj � fjÿ2
Pe 2

�
�
Ejvÿ Fj

Pe 2

�
Z, �20�

where

Aj � 1

2
Hj

�
y 0U � y 0L

�
, Ej � 1

2
Hj

�
y 0U ÿ y 0L

�
,

Bj � 1

2
Hj

�
y 00U � y 00L

�
, Fj � 1

2
Hj

�
y 00U ÿ y 00L

�
: �21�

The boundary conditions are readily determined to
be homogeneous since the asymptotic part of the sol-
ution reproduces the two wall temperatures; fj�ÿ1� �
fj�1� � 0: All comments about the method and form of

the solution given in the previous section are equally
valid.

3.3. Annular region

In principle, this is the exact analog of the previous
problem where the internal TI, and external TE, wall
temperatures are speci®ed in the limits of the domain

r0RrRlr0, i.e. 1RZRl, and the dimensionless tem-
peratures are de®ned as:

y � Tÿ T0

TI1 ÿ T
, yI � TI ÿ T0

TI1 ÿ T0
, and

yE � TE ÿ T0

TI1 ÿ T0
:

�22�
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Hence:

y�Z, 1� � yI�Z�, and y�Z, l� � yE�Z�: �23�
The proposed solution contains an asymptotic term

determined as a solution of Ly1 � 0: It di�ers from
the previous case only in consequence of the form of

the laplacian operator in cylindrical coordinates.

y � y1 �
X

fkgk, y1 � �yE ÿ yI � ln Z
ln l
� yI: �24�

By the arguments presented in the previous case,

one obtains homogeneous boundary conditions, and
an in®nite set of ordinary di�erential equations to be
satis®ed by the coe�cient functions, they are:

fj�1� � fj�l� � 0: �25�
Comparison of Eqs. (24) and (6) permits the identi®-

cation of the functions b � 0, a � �yE ÿ yI�=ln l and

b � yI and the calculation of the constants in Eq. (10).

Lfj � v
ÿ
Aj � fjÿ1

�ÿ Bj � fjÿ2
Pe 2

�
�
Ejvÿ Fj

Pe 2

�
ln Z;

�26�

Aj �Hj

�
y 0I
�
, Ej � 1

ln l
Hj

�
y 0E ÿ y 0I

�
,

Bj �Hj

�
y 00I
�
, Fj � 1

ln l
Hj

�
y 00E ÿ y 00I

�
: �27�

4. Speci®ed heat ¯ux

It is assumed, as previously, that the ¯uid entering

at temperature T0, and that the heat ¯ux at the wall is
speci®ed as a function of z satisfying the following
limits: limz4ÿ1qw�z� � 0, and limz41qw�z� � q1: If

two walls are present, then the heat ¯ux is speci®ed at
both, the left limit must apply to both, but the right
limits may di�er in sign or in absolute value. The sim-
plest problem is again the one in circular pipes.

4.1. Circular pipes

The dimensionless energy balance equation is
invariant, and only the reference DT is de®ned di�er-

ently as DT � jq1jr0=k: The boundary conditions are:

lim
Z4ÿ1

y�Z, Z� � 0,
@T

@r
�z, 0� � 0+

@y
@Z
�Z, 0� � 0,

k
@T

@ r
�z, r0 � � qw�z�+@y

@Z
�Z, 1� � qw�z�

jq1j � j�Z�: �28�

The proposed solution is of the general form of the
asymptotic solution to which the expansion in the
Gram±Charlier series is added.

y � y1 �
X

fkgk,

y1 � 4j�Z�Lÿv� 4

�Z
ÿ1

j�Z� dZ:
�29�

The pseudo inverse obtained from Eq. (7) is given
by Lÿv � 1

4 �1ÿ 1
2Z

2�Z 2: The term in the integral corre-

sponds to term 4Z that appears in the asymptotic sol-
ution for the constant heat ¯ux problem, and without
axial conduction. As already mentioned b 0 � b, which
implies Aj � 0:
As the asymptotic part of the proposed solution

satis®es the boundary conditions, then the coe�cient
function of the expansion satis®es homogeneous con-

ditions.

Lfj � vfjÿ1 ÿ Bj � fjÿ2
Pe 2

�
�
Cjvÿ Dj

Pe 2

�
Lÿv: �30�

Bj � Cj � 4Hj

ÿ
j 0
�
; Dj � 4Hj

ÿ
j 00
�
: �31�

Knowledge of the heat ¯ux distribution allows the
calculation of Bj, Cj and Dj for all values of j. As in

the previous situations the equation for f0 depends
only on B0, C0 and D0, the equation for f1 depends
only on B1, C1, D1 and f0, and the general term fj
depends only on Bj, Cj, Dj and fjÿ1, fjÿ2: Details of
this solution will be presented elsewhere.

4.2. Parallel plates

The parabolic velocity pro®le yields Lÿv �
1
2 �1ÿ 1

6Z
2�Z 2 and Lÿ�0� � Z: The general form of the

solution is given by Eq. (29) with a new de®nition for
the asymptotic part:

y1 � 3

4
�jU ÿ jL �Lÿv�

1

2
�jU � jL �Z

� 3

4

�Z
ÿ1
�jU ÿ jL � dZ, �32�

where jU and jL are the dimensionless heat ¯uxes, re-
spectively, for Z � 1, and Z � ÿ1: The constants in Eq.

(10) are:

Bj � Cj � 3

4
Hj

�
j 0U ÿ j 0L

�
, Dj � 3

4
Hj

�
j 00U ÿ j 00L

�
,
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Ej � 1

2
Hj

�
j 0U � j 0L

�
, and

Fj � 1

2
Hj

�
j 00U � j 00L

�
:

�33�

Knowledge of the heat ¯ux on both walls is necess-

ary, and su�cient to determine the above constants.
Comments on the structure of the set of di�erential
equations given in the previous section also apply here.

4.3. Annular region

The steps for the determination of the asymptotic
solution follow, very closely those of the previous item.
Firstly Lÿv, and Lÿ�0� are determined; from these the

general expression for y1 follows. The boundary con-
ditions for the heat ¯ux in the internal and external
walls are used to determine the functions b�Z �, and

a(Z) appearing in the general solution, Eq. (6).
Repeating the arguments given above there follows
b 0 � b:

y1 � bLÿv� a ln Z� b

� b

"
1

4
Z 2

�
1ÿ 1

4
Z 2

�
� l 2 ÿ 1

4 ln l
Z 2� ln Zÿ 1�

#
� a ln Z� b, �34�

The boundary conditions at each wall are written as:

ÿ@y
@Z
�Z, 1� � ÿbS I�l� � a � jI

ÿ@y
@Z
�Z, l� � ÿbSE�l� � a

l
� jE,

where

SI�l� �
"
1

4
ÿ
ÿ
l 2 ÿ 1

�
4 ln l

#
,

SE�l� �
"
l3

4
� l

ÿ
1ÿ l 2

�
4 ln l

# �35�

Introducing these results into the general asymptotic
solution (Eq. (34)) gives:

y � y1 �
X

fkgk,

y1 � ljE ÿ jI

lSE ÿ SI

Lÿv

�
�
jI ÿ

ljE ÿ jI

lSE ÿ SI

SI

�
ln Z�

�Z
ÿ1

ljE ÿ jI

lSE ÿ SI

dZ:

�36�

Eq. (10) is applicable with the constants calculated

from the expression (11):

Bj � Cj � 1

lSE ÿ SI

Hj

ÿ
lj 0E ÿ j 0I

�
,

Dj � 1

lSE ÿ SI

Hj

ÿ
lj 00E ÿ j 00I

�
,

Ej �Hj

�
j 0I ÿ

lj 0E ÿ j 0I
lSE ÿ SI

SI

�
,

Fj �Hj

�
j 00I ÿ

lj 00E ÿ j 00I
lSE ÿ SI

SI

� �37�

5. Speci®ed convective transfer

The third type of boundary conditions deal with
problems of convective heat transfer from the wall sur-

faces to the surroundings, neglecting the wall thermal
resistance. The ¯uid inlet temperature is T0, and the
surroundings temperature may vary from T0, for all
surfaces, to an asymptotic value Ta1, for each surface,

with one of these taken as reference. In terms of
dimensionless variables, the convective boundary con-
ditions may be written as:�
@y
@Z

�
w

� Bi�ya ÿ yw �, where y � Tÿ T0

Ta1 ÿ T0
,

yw � Tw ÿ T0

Ta1 ÿ T0
, ya � Ta ÿ T0

Ta1 ÿ T0
:

�38�

The Biot number is de®ned by Bi � hsr0=k, where hs

is the convective heat transfer coe�cient from the wall

to the surroundings. In this problem b � 0: The form
of the di�erential equation for the coe�cient functions
are equal to the equivalent Eqs. (16) and (17) for pipe
¯ow, (19) and (20) for parallel plates, and (26) and

(27) for annular ¯ow. For the asymptotic solution one
must express the wall temperatures as functions of the
speci®ed ambient temperatures.

The coe�cient functions satisfy the convective
boundary conditions at all walls, expressed as:

fk�1� � Bi f 0k�1� � 0: �39�

5.1. Circular pipes

The asymptotic solution is determined solely by the
surroundings temperature, y1 � ya �b � 0, a � 0, and

b � ya). Only the coe�cients Aj and Bj di�er from zero
and the di�erential equations for the coe�cient func-
tions are given by Eq. (16), in which:
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Aj �Hj

ÿ
y 0a
�
, and Bj �Hj

ÿ
y 00a
�
: �40�

An article containing details of this solution has

been submitted for publication [35].

5.2. Parallel plates

The asymptotic solution for this case depends on the
surroundings temperatures prevailing on the upper and

lower sides of the two walls. Let yaU, and yaL be the
dimensionless ambient temperatures. The asymptotic
solution is given by:

y1 � 1

2
�ywU ÿ ywL �Z� 1

2
�ywU � ywL �

� yaU ÿ yaL

�2� 1=BiL ÿ 1=BiU �Z

� yaL�1� 1=BiU � � yaU�1� 1=BiL �
�2� 1=BiU � 1=BiL � �41�

The di�erential equations for the coe�cient func-

tions are given by the set (19), where the constants are
determined by expressions similar to (20).

Aj � 1

2
Hj

�
y 0wU � y 0wL

�
, Ej � 1

2
Hj

�
y 0wU ÿ y 0wL

�
,

Bj � 1

2
Hj

�
y 00wU � y 00wL

�
, Fj � 1

2
Hj

�
y 00wU ÿ y 00wL

� �42�

The wall temperatures can be read from Eq. (41).

5.3. Annular region

Surrounding temperature inside the internal wall,
and outside the external wall should be prescribed,
leading to the dimensionless temperatures yal and yaE:
The asymptotic solution is

y1 � �ywE ÿ ywI � ln Z
ln l
� ywI

� yaE ÿ yaI

1� 1=BiE � 1=BiI

ln Z
ln l

� yaI�ln l� 1=BiE � � yaE=BiI
ln l� 1=BiE � 1=BiI

, �43�

on the basis which the constants in Eq. (10) are calcu-
lated

Aj �Hj

ÿ
y 0wI

�
, Ej � 1

ln l
Hj

ÿ
y 0wE ÿ y 0wI

�
,

Bj �Hj

ÿ
y 00wI

�
, Fj � 1

ln l
Hj

ÿ
y 00wE ÿ y 00wI

�
: �44�

6. Speci®ed heat ¯ux in a circular pipe

In order to demonstrate the possibilities of the

present method, it is applied to the case of heat trans-
fer to the ¯ow of ¯uid inside a circular pipe with speci-
®ed, variable surface heat ¯ux.

Consider the hydrodynamically developed ¯ow in a
pipe, with thermal boundary condition of the second
type. The dimensionless variables and the boundary
conditions are given in Eq. (28), the general form of

the solution satis®es Eq. (29), the di�erential equations
for the coe�cient functions are given by Eqs. (30) and
(31). The problem is completely determined with the

speci®cation of the analytic form of the dimensionless
heat ¯ux distribution along the Z-axis. This is chosen
as a one-parameter (S ) family of distributions which

approach the step function as S41:
qw�z�
jq1j � j�Z� � 1

2

�
1� erf�SZ�

�
: �45�

The asymptotic solution and the constants appearing
in the di�erential equation for the coe�cient functions

become known, their values being listed in Table 1 for
two values of the parameter S �S � 1, and 2). For
S � 1, the ®rst derivative of the wall heat ¯ux is equal
to g0, and therefore, only A0, B0, and C1 are di�erent

from zero. For S � 2, and in fact for all other values
of S, the ®rst derivative of the wall heat ¯ux is an even
function of Z, and consequently, only the Bj and Cj

for even, and Dj for odd values of j, di�er from zero.
Solutions of the set of equations (30), with homo-
geneous boundary conditions f 0k�0� � f 0k�1� � 0 give

origin to polynomials in Z, of degree 2k� 8, calculated
using a Maple program. The temperature pro®les, as a
function of Z, for di�erent value of the axial coordi-
nate, are given in Fig. 2(a) and (b), respectively, for

S � 1, and S � 2: The heating process leads tempera-
ture pro®les decreasing towards the center line. Heat-
ing starts before the origin of the axial direction

(negative values of Z in Fig. 2(a) and (b)) ®rstly
because of the shape of the heating curve, and sec-

Table 1

Coe�cients of the di�erential equations

Bi � Ci � Di�1

S � 1 S � 2

0 2.2568 2.2568

1 0 0

2 0 ÿ0.4231
3 0 0

4 0 0.3967

5 0 0

6 0 ÿ0.0025
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ondly due to the axial conduction. The ®rst e�ect is

attenuated with increasing values of S, leading to
lower temperatures for the same values of Z. As Z
increases, the dimensionless heat ¯ux approaches one,

and the temperature pro®les become parallel displace-
ments of each other. Qualitative agreement with the

results established by Papoutsakis et al. (1980), is evi-
dent. Complete agreement cannot be sought due to the
di�erence in boundary conditions.

The results obtained allow the calculation of the
wall, and average dimensionless temperatures. Knowl-

edge of these, and of the heat ¯ux as given by the
boundary condition (Eq. (45)) allows the calculation of
the Nusselt number.

Nu � hr0
k
� qw�Z�

Tw ÿ Tm

r0
k
� j�Z�

yw�Z� ÿ ym�Z� , �46�

where:

ym � 2

�1
0

v�Z, Z� dZ: �47�

Calculated values are given in Figs. 3(a) and (b) for
di�erent values of the Peclet number, and the two

values of S. It is observed that the Nusselt number
attains an asymptotic value as Z41 independent of
the Peclet number and S. This asymptotic value is
4.3636 which compares well with the calculated value

Fig. 2. Radial pro®les of dimensionless temperature of various axial distances: (a) Pe � 5, S � 1; (b) Pe � 5, S � 2
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of 4.36 given by Papoutsakis et al. (1980). It must be
stressed that the numerical results for S � 1 were cal-

culated with only ®ve terms of the series, as the num-
ber of terms required for convergence in four decimal
digits. S � 2 requires 12 terms, and di�erent problems

require even more terms.

7. General representation of the boundary conditions

The functions specifying the boundary conditions
must possess asymptotes on both sides of the real line.
The left limit being zero, and the right a known con-

stant, say o1: These boundary conditions can be
transformed into a square integrable function by sub-

tracting of a term proportional to the error function
and the residue can be expanded in a Gram±Charlier

series.

O�Z� � o1
2

�
1� erf�Z�

�
�
X

okgk: �48�

In the above expression, O�Z � stands for any one of

the functions of the axial coordinate which specify the
boundary condition of the three types considered. The
constant o1 is the asymptotic value of O�Z �, o1 �
limZ41O�Z �, and the coe�cients ok are calculated
with the help of the operators de®ned by Eq. (9).

ok �Hk

�
O�Z� ÿ o1

2
�1� erf�Z��

�
: �49�

Fig. 2 (continued)
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De®ne the set of solutions of the equations for the

coe�cient functions ff erf
j , fj; 0, fj; 1, fj; 2, . . .g correspond-

ing to the following set of boundary conditions:

f 12 �1� erf�Z ��, g0�Z �, g1�Z �, g2�Z �, . . .g: Then the

superposition principle implies that the general sol-

ution corresponding to the boundary condition (47) is
given by the linear combination of the basic solutions

de®ned above. That is:

fj � o1 f erf
j �

X
i�0

oifj, i: �50�

The proof of this statement rests on the linearity of
the operator Hj with which the constants in the di�er-
ential equations for the functions fj are calculated. If

Aerf
j , and Aj, i are the constants corresponding to a

boundary condition in the error function, and gi, then

Fig. 3. Behavior of the local Nusselt number for di�erent values of Peclet number: (a) S � 1; (b) S � 2:
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Aj corresponding to the boundary condition of the
form of Eq. (48), is the linear combination Aj�o1Aerf

j

�Pi�0 oiAj; i: The same applies to the remaining con-
stants, B±F, and consequently fj satis®es a di�erential
equation which is a linear combination of the di�eren-

tial equations for the basic solutions. The converse is
obtained by the substitution of expression (48) into the
di�erential equation for the function fj, and observing

that it reduces to the di�erential equations for the
basic solutions when, for each successive value of i, it
is made, in turns, o1 � 1, and oi � 0, or o1 � 0, and

oi � 1, and ok � 0 for k 6�i: If two functions are speci-
®ed, for instance, as a consequence of the existence of
two walls, then two sets of basic solutions exist, corre-
sponding to the application of the basic set to each of

the surfaces, and zero to the other.

8. Final remarks

The proposed method of solution might be com-

pared to the approximate method due to Galerkin,
where the residue of the di�erential equation is made
orthogonal to a set of chosen functions. The proposed
method does not rest on residues, and no portion of

Eq. (4) is set aside, or approximated. The method is
based upon the insertion of the solution into the Hil-
bert space of square integrable function by means of

the subtraction of an asymptotic solution. This vector
space admits an in®nite number of complete bases,
each of which can be chosen to represent any given

vector. The basis chosen leads to a system of di�eren-
tial equations that can be exactly solved in simple
fashion yielding solutions in the form of polynomials.
The fact that a di�erent set of functions was used in

conjunction with the Gram±Charlier basis does not
alter the quality of the solution, and is a consequence
of the fact that the basis is not an orthogonal one.

The method has been tested in applications to pipe
¯ow with parabolic velocity pro®le, and to the three
types of boundary conditions.
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